Search results for "Hydroxyl Radical"
showing 10 items of 65 documents
Hydroxylamine released by nitrifying microorganisms is a precursor for HONO emission from drying soils
2018
AbstractNitrous acid (HONO) is an important precursor of the hydroxyl radical (OH), the atmosphere´s primary oxidant. An unknown strong daytime source of HONO is required to explain measurements in ambient air. Emissions from soils are one of the potential sources. Ammonia-oxidizing bacteria (AOB) have been identified as possible producers of these HONO soil emissions. However, the mechanisms for production and release of HONO in soils are not fully understood. In this study, we used a dynamic soil-chamber system to provide direct evidence that gaseous emissions from nitrifying pure cultures contain hydroxylamine (NH2OH), which is subsequently converted to HONO in a heterogeneous reaction w…
Mechanism of the OH Radical Addition to Adenine from Quantum-Chemistry Determinations of Reaction Paths and Spectroscopic Tracking of the Intermediat…
2016
The OH radical is a well-known mediator in the oxidation of biological structures like DNA. Over the past decades, the precise events taking place after reaction of DNA nucleobases with OH radical have been widely investigated by the scientific community. Thirty years after the proposal of the main routes for the reaction of •OH with adenine (Vieira, A.; Steenken, S. J. Am. Chem. Soc. 1990, 112, 6986−6994), the present work demonstrates that the OH radical addition to C4 position is a minor pathway. Instead, the dehydration process is mediated by the A5OH adduct. Conclusions are based on density functional theory calculations for the ground-state reactivity and highly accurate multiconfigur…
Study of interaction of antimutagenic 1,4-dihydropyridine AV-153-Na with DNA-damaging molecules and its impact on DNA repair activity
2018
Background1,4-dihydropyridines (1,4-DHP) possesses important biochemical and pharmacological properties, including antioxidant and antimutagenic activities. It was shown that the antimutagenic 1,4-dihydropyridine AV-153-Na interacts with DNA. The aim of the current study was to test the capability of the compound to scavenge peroxynitrite and hydroxyl radical, to test intracellular distribution of the compound, and to assess the ability of the compound to modify the activity of DNA repair enzymes and to protect the DNA in living cells against peroxynitrite-induced damage.MethodsPeroxynitrite decomposition was assayed by UV spectroscopy, hydroxyl radical scavenging—by EPR spectroscopy. DNA b…
Free energy profiles for two ubiquitous damaging agents: methylation and hydroxylation of guanine in B-DNA
2017
International audience; DNA methylation and hydroxylation are two ubiquitous reactions in DNA damage induction, yet insights are scarce concerning the free energy of activation within B-DNA. We resort to multiscale simulations to investigate the attack of a hydroxyl radical and of the primary diazonium onto a guanine embedded in a solvated dodecamer. Reaction free energy profiles characterize two strongly exergonic processes, yet allow unprecedented quantification of the barrier towards this damage reaction, not higher than 6 kcal mol−1 and sometimes inexistent, and of the exergonicities. In the case of the [G(C8)-OH]˙ intermediate, we challenge the functional dependence of such simulations…
Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals
2017
Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl ra…
Melatonin protects human red blood cells from oxidative hemolysis: new insights into the radical-scavenging activity.
1999
Antioxidant activity of melatonin in human erythrocytes, exposed to oxidative stress by cumene hydroperoxide (cumOOH), was investigated. CumOOH at 300 microM progressively oxidized a 1% suspension of red blood cells (RBCs), leading to 100% hemolysis in 180 min. Malondialdehyde and protein carbonyls in the membrane showed a progressive increase, as a result of the oxidative damage to membrane lipids and proteins, reaching peak values after 30 and 40 min, respectively. The membrane antioxidant vitamin E and the cytosolic reduced glutathione (GSH) were totally depleted in 20 min. As a consequence of the irreversible oxidative damage to hemoglobin (Hb), hemin accumulated into the RBC membrane d…
Inhibition of induced DNA oxidative damage by beers: correlation with the content of polyphenols and melanoidins.
2005
Beers are a source of dietary flavonoids; however, there exist differences in composition, alcohol concentration, and beneficial activities. To characterize these differences, three kinds of lager beer of habitual consumption in Spain, dark, blond, and alcohol-free, were assayed for total phenolic content, antioxidant activity, superoxide and hydroxyl radical scavenging activities, and in vitro inhibitory effect on DNA oxidative damage. Furthermore, their melanoidin content and correlation with antioxidant activity were evaluated. Dark beer contained the highest total phenolic (489 +/- 52 mg/L) and melanoidin (1.49 +/- 0.02 g/L) contents with a 2-fold difference observed when compared to th…
Diurnal variability, photochemical production and loss processes of hydrogen peroxide in the boundary layer over Europe
2019
Hydrogen peroxide (H2O2) plays a significant role in the oxidizing capacity of the atmosphere. It is an efficient oxidant in the liquid phase and serves as a temporary reservoir for the hydroxyl radical (OH), the most important oxidizing agent in the gas phase. Due to its high solubility, removal of H2O2 due to wet and dry deposition is efficient, being a sink of HOx (OH+HO2) radicals. In the continental boundary layer, the H2O2 budget is controlled by photochemistry, transport and deposition processes. Here we use in situ observations of H2O2 and account for chemical source and removal mechanisms to study the interplay between these processes. The data were obtained during five ground-base…
A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1
2020
The hydroxyl radical (OH) plays critical roles within the troposphere, such as determining the lifetime of methane (CH4), yet is challenging to model due to its fast cycling and dependence on a multitude of sources and sinks. As a result, the reasons for variations in OH and the resulting methane lifetime (τCH4), both between models and in time, are difficult to diagnose. We apply a neural network (NN) approach to address this issue within a group of models that participated in the Chemistry-Climate Model Initiative (CCMI). Analysis of the historical specified dynamics simulations performed for CCMI indicates that the primary drivers of τCH4 differences among 10 models are the flux of UV li…
2010
Abstract. Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples w…